This bibliography contains all literature mentioned in any part of this website.

[15]Audze, P. and V. Eglais (1977). New approach for planning out of experiments, Problems of Dynamics and Strengths, 35, 104-107.
[3]Baer, D. (1992). Punktverteilungen in Würfeln beliebiger Dimension bezüglich der Maximum-norm, Wiss. Z. Pädagoh. Hochsch. Erfurt/Mühlhausen, Math.-Naturwiss. Reihe 28, 87-92.
[16]Bates, S.J., J. Sienz, and V.V. Toropov (2004). Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm, AIAA 2004-2011, 1-7.
[17]Bulik, M., M. Liefvendahl, R. Stocki, and C. Wauquiez (2004). Stochastic simulation for crashworthiness, Advances in Engineering Software, 35 (12), 791-803.
[10]Dam, E.R. van (2008). Two-dimensional minimax Latin hypercube designs, Discrete Applied Math. 156 (18), 3483-3493.
[5]Dam, E.R. van, B.G.M. Husslage, and D. den Hertog (2010). One-dimensional nested maximin designs, Journal of Global Optimization 46, 287-306.
[9]Dam, E.R. van, B.G.M. Husslage, D. den Hertog, and J.B.M. Melissen (2007). Maximin Latin hypercube designs in two dimensions, Operations Research 55 (1), 158-169.
[14]Dam, E.R. van, G. Rennen, B.G.M. Husslage (2009). Bounds for maximin Latin hypercube designs, Operations Research 57(3), 595-608
[4]Fejes Tóth, L. (1971). Punktverteilungen in einem Quadrat, Studia Sci. Math. Hung. 6, 439-442.
[1]Florian, A. (1989). Verteilung von Punkten in einem Quadrat, Sitzungsber., Abt. II, Österr. Akad. Wiss., Math.-Naturwiss. Kl. 198, 27-44.
[22]Grosso, A., A.R.M.J.U. Jamali, and M. Locatelli (2009). Finding maximin latin hypercube designs by Iterated Local Search heuristics, European Journal of Operational Research, 197 (2), 541-547
[18]Hino, R., F. Yoshida, and V.V. Toropov (2006). Optimum blank design for sheet metal forming based on the interaction of high-and low-fidelity FE models, Archive of Applied Mechanics, 75 (10), 679-691.
[6]Husslage, B.G.M., E.R. van Dam, and D. den Hertog (2005). Nested maximin Latin hypercube designs in two dimensions, CentER Discussion Paper 2005-79, 11pp.
[12]Husslage, B.G.M., G. Rennen, E.R. van Dam, and D. den Hertog (2011). Space-filling Latin hypercube designs for computer experiments, Optimization and Engineering 12, 611-630.
[24]Jin, R., W. Chen, and A. Sudjianto (2005). An efficient algorithm for constructing optimal design of computer experiments, Journal of Statistical Planning and Inference, 134(1), 268-287.
[7]Koehler, J.R., and A.B. Owen (1996), Computer Experiments, in: S. Ghosh and C.R. Rao (eds), Handbook of Statistics, Vol. 13, Elsevier Science, pp. 261-308.
[19]Liefvendahl, M. and R. Stocki (2006). A study on algorithms for optimization of Latin hypercubes, Journal of Statistical Planning and Inference, 136 (9), 3231-3247.
[2]Melissen, J.B.M. (1997). Packing and convering with circles, Ph.D. Thesis, ISBN 90-393-1500-0, Utrecht.
[13]Morris, M.D., and T.J. Mitchell (1995) Exploratory designs for computational experiments, Journal of Statistical Planning and Inference 43, 381-402.
[11]Nurmela, K.J., and P.R.J. Östergård (2000). Covering a square with up to 30 equal circles, Research Report A62, Helsinki University of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland.
[23]Rennen, G., B.G.M. Husslage, E.R. van Dam, and D. den Hertog (2010). Nested maximin Latin hypercube designs, Structural and Multidisciplinary Optimization 41, 371-395.
[20]Rikards, R., A. Chate, and G. Gailis (2001). Identification of elastic properties of laminates based on experiment design, International Journal of Solids and Structures, 38 (30-31), 5097-5115.
[8]Santner, Th.J., B.J. Williams, and W.I. Notz (2003), The Design and Analysis of Computer Experiments, Springer Series in Statistics, Springer-Verlag, New York.
[21]Stocki, R. (2005). A method to improve design reliability using optimal Latin hypercube sampling, Computer Assisted Mechanics and Engineering Sciences, 12 (4), 393-412.